您现在的位置是:首页 > 技术教程 正文

python|闲谈2048小游戏和数组的旋转及翻转和转置

admin 阅读: 2024-03-19
后台-插件-广告管理-内容页头部广告(手机)

目录

2048

生成数组

n阶方阵

方阵旋转

顺时针旋转

逆时针旋转

mxn矩阵

矩阵旋转

测试代码

测试结果

翻转和转置


2048

《2048》是一款比较流行​的数字游戏​,最早于2014年3月20日发行。原版2048由Gabriele Cirulli首先在GitHub上发布,后被移植到各个平台,并且衍生出不计其数的版本。但在网上看到,居说它也不算是原创,是基于《1024》和《小3传奇》的玩法开发而成的;还有一说,它来源于另一款游戏《Threes!》,由Asher Vollmer和Greg Wohlwend合作开发,于2014年2月6日在App Store上架。

2048游戏规则很简单,游戏开始时在4x4的方格中随机出现数字2,每次可以选择上下左右其中一个方向去滑动,每滑动一次,所有的数字方块都会往滑动的方向靠拢外,相邻的相同数字在靠拢时会相加,系统也会在空白的格子里随机增加一个数字2或4。玩家要想办法在这16格范围中,不断上下左右滑动相加数字,从而凑出“2048”这个数字方块。

实际上,这个游戏就是在操作一个4x4的二维数组,数组的元素只要1-11就行了,因为2的11次方就是2048。同样,相邻相同数字的累加就变成了相邻相同指数的递增1。

在编写这个2048游戏前,先来谈谈4x4数组的操作,对python来说虽然也有数组,但通常会用列表来操作。以下就在IDLE shell上流水账操作:

生成数组

16个数字的列表推导式:

>>> [i for i in range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

用*解包更pythonic:

>>> [*range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

分割成4x4二维列表:

>>> [[*range(16)][i*4:i*4+4] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

只是数列如此写法可能更好:

>>> [[*range(i*4,i*4+4)] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

全0列表:

>>> [[0]*4 for _ in range(4)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

n阶方阵

从4阶方阵扩展到n阶:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> matrix(4)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> matrix(5)
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]
>>> matrix(6)
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35]]

随机生成数字1或2,比例为3:1:

>>> from random import sample as rnd
>>> rnd([1,1,1,2],1)
[1]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)

随机产生1或者2个“1”,比例为2:1:

>>> from random import sample as rnd
>>> x = 4
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
x = 5
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

方阵旋转

numpy有现成的函数rot90(),表示顺时针旋转数组90度。

>>> import numpy as np
>>> np.array(range(16))
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
>>> np.array([[*range(i*4,i*4+4)] for i in range(4)])
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> array = np.array([[*range(i*4,i*4+4)] for i in range(4)])

逆时针旋转,参数k为正数:

>>> np.rot90(array)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])
>>> np.rot90(array, k=2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=3)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])

顺时针旋转,参数k为负数:

>>> np.rot90(array, k=-1)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])
>>> np.rot90(array, k=-2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=-3)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])

不使用numpy,只用列表推导式也能实现旋转:

顺时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> mat4 = matrix(4)
>>> mat4
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> [[mat[len(mat[0])-j-1][i] for j in range(len(mat[0]))] for i in range(len(mat))]
[[12, 8, 4, 0], [13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3]]

写一个模拟np.array的__repr__方法来检测旋转效果:

  1. class List():# 仅支持二维数组的展示
  2. def __init__(self, lst):
  3. self.x = lst
  4. def __repr__(self):
  5. n = len(str(max(sum(self.x,[]))))
  6. res = []
  7. for mat in self.x:
  8. res.append(', '.join(f'{x:>{n}}' for x in mat))
  9. return '],\n\t['.join(res).join(['Array([ [','] ])'])

检测结果如下:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> mat4 =matrix(4)
>>> List(mat4)
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(mat4))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate(rotate(mat4)))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(mat4))))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate(rotate(rotate(rotate(mat4)))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])

结果符合预期,旋转4次恢复原样;同样更高阶方阵也符合:

>>> List(matrix(5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])
>>> List(rotate(matrix(5)))
Array([ [20, 15, 10,  5,  0],
    [21, 16, 11,  6,  1],
    [22, 17, 12,  7,  2],
    [23, 18, 13,  8,  3],
    [24, 19, 14,  9,  4] ])

逆时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(rotate2(matrix(4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate2(rotate2(matrix(4))))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(rotate2(matrix(4)))))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(rotate2(matrix(4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate2(matrix(5)))
Array([ [ 4,  9, 14, 19, 24],
    [ 3,  8, 13, 18, 23],
    [ 2,  7, 12, 17, 22],
    [ 1,  6, 11, 16, 21],
    [ 0,  5, 10, 15, 20] ])
>>> List(rotate2(rotate2(matrix(5))))
Array([ [24, 23, 22, 21, 20],
    [19, 18, 17, 16, 15],
    [14, 13, 12, 11, 10],
    [ 9,  8,  7,  6,  5],
    [ 4,  3,  2,  1,  0] ])

mxn矩阵

把方阵拓展到矩阵:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(matrix(5,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15],
    [16, 17, 18, 19] ])
>>> List(matrix(5,5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])

矩阵旋转

rotate顺时针旋转,rotate2逆时针旋转

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(rotate(matrix(3,4)))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(matrix(3,4)))))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate(rotate(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(matrix(3,4)))))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate2(matrix(3,4)))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate(rotate(rotate(rotate(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
List(rotate2(rotate2(rotate2(rotate2(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])

旋转函数还能写成如下形式,只是坐标与range参数的互调形式:

>>> rotate = lambda m: [[m[j][i] for j in range(len(m)-1,-1,-1)] for i in range(len(m[0]))]
>>> rotate2 = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0])-1,-1,-1)]

lambda匿名函数虽然很简洁,但没有普通函数易懂,我们把lambda函数改成模拟np.rot90()的普通函数rotate(matrix, k=1),其中参数k为90度的倍数,正数顺时针旋转,负数则逆时针旋转:

  1. def rotate(matrix, k=1):
  2. rows = len(matrix)
  3. cols = len(matrix[0])
  4. res = [[0]*rows for _ in range(cols)]
  5. k %= 4
  6. if k==1:
  7. for i in range(rows):
  8. for j in range(cols):
  9. res[j][rows-i-1] = matrix[i][j]
  10. elif k==2:
  11. res = [[0]*cols for _ in range(rows)]
  12. for i in range(rows):
  13. for j in range(cols):
  14. res[rows-i-1][cols-j-1] = matrix[i][j]
  15. elif k==3:
  16. for i in range(rows):
  17. for j in range(cols):
  18. res[cols-j-1][i] = matrix[i][j]
  19. else:
  20. return matrix
  21. return res

测试代码

  1. def rotate(matrix, k=1):
  2. rows = len(matrix)
  3. cols = len(matrix[0])
  4. res = [[0]*rows for _ in range(cols)]
  5. k %= 4
  6. if k==1:
  7. for i in range(rows):
  8. for j in range(cols):
  9. res[j][rows-i-1] = matrix[i][j]
  10. elif k==2:
  11. res = [[0]*cols for _ in range(rows)]
  12. for i in range(rows):
  13. for j in range(cols):
  14. res[rows-i-1][cols-j-1] = matrix[i][j]
  15. elif k==3:
  16. for i in range(rows):
  17. for j in range(cols):
  18. res[cols-j-1][i] = matrix[i][j]
  19. else:
  20. return matrix
  21. return res
  22. def show(matrix):
  23. n = len(str(max(sum(matrix,[]))))
  24. res = []
  25. for mat in matrix:
  26. res.append(', '.join(f'{x:>{n}}' for x in mat))
  27. print('],\n\t['.join(res).join(['Array([ [','] ])']))
  28. matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
  29. for i in range(-4,5):
  30. show(rotate(matrix(4,4), i))
  31. for i in range(-4,5):
  32. show(rotate(matrix(5,3), i))

测试结果

Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])

翻转和转置

翻转可以是水平方向和重置方向的:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> flipH = lambda m: [[m[i][len(m[0])-j-1] for j in range(len(m[0]))] for i in range(len(m))]
>>> flipV = lambda m: [[m[len(m)-j-1][i] for i in range(len(m[0]))] for j in range(len(m))]
>>> List(flipH(matrix(4,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12] ])
>>> List(flipV(matrix(4,4)))
Array([ [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])
>>> List(flipH(matrix(3,5)))
Array([ [ 4,  3,  2,  1,  0],
    [ 9,  8,  7,  6,  5],
    [14, 13, 12, 11, 10] ])
>>> List(flipV(matrix(3,5)))
Array([ [10, 11, 12, 13, 14],
    [ 5,  6,  7,  8,  9],
    [ 0,  1,  2,  3,  4] ])
>>> List(flipH(matrix(5,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12],
    [19, 18, 17, 16] ])
>>> List(flipV(matrix(5,4)))
Array([ [16, 17, 18, 19],
    [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])

转置可以看作是翻转和旋转的组合,对方阵来说就是以对角线为轴的翻转:

>>> transpose = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(transpose(matrix(4,4)))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(transpose(transpose(matrix(4,4))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(matrix(4,4)))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(flipH(rotate(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(rotate2(matrix(4,4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(flipV(rotate2(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])

在numpy中,转置由.T属性完成

>>> import numpy as np
>>> arr = np.array(matrix(3,4))
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> arr.T
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])
>>> arr = np.array(matrix(4,4))
>>> arr.T
array([[ 0,  4,  8, 12],
       [ 1,  5,  9, 13],
       [ 2,  6, 10, 14],
       [ 3,  7, 11, 15]])
>>> arr.T.T
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> arr = np.array(matrix(5,4))
>>> arr.T
array([[ 0,  4,  8, 12, 16],
       [ 1,  5,  9, 13, 17],
       [ 2,  6, 10, 14, 18],
       [ 3,  7, 11, 15, 19]])


标签:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

在线投稿:投稿 站长QQ:1888636

后台-插件-广告管理-内容页尾部广告(手机)
关注我们

扫一扫关注我们,了解最新精彩内容

搜索