【目标检测】YOLOV8实战入门(五)模型预测
后台-插件-广告管理-内容页头部广告(手机) |
predict模式用于在新图像或视频上使用经过训练的YOLOv8模型进行预测,在此模式下,模型从checkpoint 文件加载,用户可以提供图像或视频来执行推理。模型预测输入图像或视频中对象的类别和位置。
from ultralytics import YOLO from PIL import Image import cv2 model = YOLO("model.pt") # 接受所有格式-image/dir/Path/URL/video/PIL/ndarray。0用于网络摄像头 results = model.predict(source="0") results = model.predict(source="folder", show=True) # 展示预测结果 # from PIL im1 = Image.open("bus.jpg") results = model.predict(source=im1, save=True) # 保存绘制的图像 # from ndarray im2 = cv2.imread("bus.jpg") results = model.predict(source=im2, save=True, save_txt=True) # 将预测保存为标签 # from list of PIL/ndarray results = model.predict(source=[im1, im2])- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
YOLOv8预测模式可以为各种任务生成预测,在使用流模式时返回结果对象列表或结果对象的内存高效生成器。通过在预测器的调用方法中传递stream=True来启用流模式。stream=True的流媒体模式应用于长视频或大型预测源,否则结果将在内存中累积并最终导致内存不足错误。
inputs = [img, img] # list of numpy arrays results = model(inputs, stream=True) # generator of Results objects for result in results: boxes = result.boxes # Boxes object for bbox outputs masks = result.masks # Masks object for segmentation masks outputs probs = result.probs # Class probabilities for classification outputs- 1
- 2
- 3
- 4
- 5
- 6
- 7
相关参数如下:
Key | Value | Description |
---|---|---|
source | 'ultralytics/assets' | source directory for images or videos |
conf | 0.25 | object confidence threshold for detection |
iou | 0.7 | intersection over union (IoU) threshold for NMS |
half | False | use half precision (FP16) |
device | None | device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
show | False | show results if possible |
save | False | save images with results |
save_txt | False | save results as .txt file |
save_conf | False | save results with confidence scores |
save_crop | False | save cropped images with results |
hide_labels | False | hide labels |
hide_conf | False | hide confidence scores |
max_det | 300 | maximum number of detections per image |
vid_stride | False | video frame-rate stride |
line_thickness | 3 | bounding box thickness (pixels) |
visualize | False | visualize model features |
augment | False | apply image augmentation to prediction sources |
agnostic_nms | False | class-agnostic NMS |
retina_masks | False | use high-resolution segmentation masks |
classes | None | filter results by class, i.e. class=0, or class=[0,2,3] |
boxes | True | Show boxes in segmentation predictions |
YOLOv8可以接受各种输入源,如下表所示。这包括图像、URL、PIL图像、OpenCV、numpy数组、torch张量、CSV文件、视频、目录、全局、YouTube视频和流。该表指示每个源是否可以在流模式下使用stream=True✅以及每个源的示例参数。
source | model(arg) | type | notes |
---|---|---|---|
image | 'im.jpg' | str, Path | |
URL | 'https://ultralytics.com/images/bus.jpg' | str | |
screenshot | 'screen' | str | |
PIL | Image.open('im.jpg') | PIL.Image | HWC, RGB |
OpenCV | cv2.imread('im.jpg')[:,:,::-1] | np.ndarray | HWC, BGR to RGB |
numpy | np.zeros((640,1280,3)) | np.ndarray | HWC |
torch | torch.zeros(16,3,320,640) | torch.Tensor | BCHW, RGB |
CSV | 'sources.csv' | str, Path | RTSP, RTMP, HTTP |
video ✅ | 'vid.mp4' | str, Path | |
directory ✅ | 'path/' | str, Path | |
glob ✅ | 'path/*.jpg' | str | Use * operator |
YouTube ✅ | 'https://youtu.be/Zgi9g1ksQHc' | str | |
stream ✅ | 'rtsp://example.com/media.mp4' | str | RTSP, RTMP, HTTP |
图像类型
Image Suffixes | Example Predict Command | Reference |
---|---|---|
.bmp | yolo predict source=image.bmp | Microsoft BMP File Format |
.dng | yolo predict source=image.dng | Adobe DNG |
.jpeg | yolo predict source=image.jpeg | JPEG |
.jpg | yolo predict source=image.jpg | JPEG |
.mpo | yolo predict source=image.mpo | Multi Picture Object |
.png | yolo predict source=image.png | Portable Network Graphics |
.tif | yolo predict source=image.tif | Tag Image File Format |
.tiff | yolo predict source=image.tiff | Tag Image File Format |
.webp | yolo predict source=image.webp | WebP |
.pfm | yolo predict source=image.pfm | Portable FloatMap |
视频类型
Video Suffixes | Example Predict Command | Reference |
---|---|---|
.asf | yolo predict source=video.asf | Advanced Systems Format |
.avi | yolo predict source=video.avi | Audio Video Interleave |
.gif | yolo predict source=video.gif | Graphics Interchange Format |
.m4v | yolo predict source=video.m4v | MPEG-4 Part 14 |
.mkv | yolo predict source=video.mkv | Matroska |
.mov | yolo predict source=video.mov | QuickTime File Format |
.mp4 | yolo predict source=video.mp4 | MPEG-4 Part 14 - Wikipedia |
.mpeg | yolo predict source=video.mpeg | MPEG-1 Part 2 |
.mpg | yolo predict source=video.mpg | MPEG-1 Part 2 |
.ts | yolo predict source=video.ts | MPEG Transport Stream |
.wmv | yolo predict source=video.wmv | Windows Media Video |
.webm | yolo predict source=video.webm | WebM Project |
预测结果对象包含以下组件:
Results.boxes: — 具有用于操作边界框的属性和方法的boxes
Results.masks: — 用于索引掩码或获取段坐标的掩码对象
Results.probs: — 包含类概率或logits
Results.orig_img: — 载入内存的原始图像
Results.path: — 包含输入图像路径的路径
默认情况下,每个结果都由一个torch. Tensor组成,它允许轻松操作:
results = results.cuda() results = results.cpu() results = results.to('cpu') results = results.numpy()- 1
- 2
- 3
- 4
from ultralytics import YOLO import cv2 from ultralytics.yolo.utils.benchmarks import benchmark model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt') results = model.predict(r'E:\CS\DL\yolo\yolov8study\bus.jpg') boxes = results[0].boxes masks = results[0].masks probs = results[0].probs print(f"boxes:{boxes[0]}") print(f"masks:{masks.xy }") print(f"probs:{probs}")
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
output:
image 1/1 E:\CS\DL\yolo\yolov8study\bus.jpg: 640x480 4 0s, 1 5, 1 36, 25.9ms Speed: 4.0ms preprocess, 25.9ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 640) WARNING 'Boxes.boxes' is deprecated. Use 'Boxes.data' instead. boxes:ultralytics.yolo.engine.results.Boxes object with attributes: boxes: tensor([[670.1221, 389.6674, 809.4929, 876.5032, 0.8875, 0.0000]], device='cuda:0') cls: tensor([0.], device='cuda:0') conf: tensor([0.8875], device='cuda:0') data: tensor([[670.1221, 389.6674, 809.4929, 876.5032, 0.8875, 0.0000]], device='cuda:0') id: None is_track: False orig_shape: tensor([1080, 810], device='cuda:0') shape: torch.Size([1, 6]) xywh: tensor([[739.8075, 633.0853, 139.3708, 486.8358]], device='cuda:0') xywhn: tensor([[0.9133, 0.5862, 0.1721, 0.4508]], device='cuda:0') xyxy: tensor([[670.1221, 389.6674, 809.4929, 876.5032]], device='cuda:0') xyxyn: tensor([[0.8273, 0.3608, 0.9994, 0.8116]], device='cuda:0') masks:[array([[ 804.94, 391.5], [ 794.81, 401.62], [ 794.81, 403.31], [ 791.44, 406.69], ...... probs:None- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
我们可以使用Result对象的plot()函数在图像对象中绘制结果。它绘制在结果对象中找到的所有组件(框、掩码、分类日志等)
annotated_frame = results[0].plot() # Display the annotated frame cv2.imshow("YOLOv8 Inference", annotated_frame) cv2.waitKey() cv2.destroyAllWindows()- 1
- 2
- 3
- 4
- 5
使用OpenCV(cv2)和YOLOv8对视频帧运行推理的Python脚本。
import cv2 from ultralytics import YOLO # Load the YOLOv8 model model = model = YOLO("yolov8-seg.yaml").load('yolov8n-seg.pt') # Open the video file video_path = "sample.mp4" cap = cv2.VideoCapture(video_path) # Loop through the video frames while cap.isOpened(): # Read a frame from the video success, frame = cap.read() if success: # Run YOLOv8 inference on the frame results = model(frame) # Visualize the results on the frame annotated_frame = results[0].plot() # Display the annotated frame cv2.imshow("YOLOv8 Inference", annotated_frame) # Break the loop if 'q' is pressed if cv2.waitKey(1) & 0xFF == ord("q"): break else: # Break the loop if the end of the video is reached break # Release the video capture object and close the display window cap.release() cv2.destroyAllWindows()- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。
在线投稿:投稿 站长QQ:1888636
后台-插件-广告管理-内容页尾部广告(手机) |