在 ResNet 中实现多尺度的特征融合(内含代码,用于图像分类)
admin 阅读: 2024-03-21
后台-插件-广告管理-内容页头部广告(手机) |
在 ResNet 中实现多尺度的特征融合,类似于特征金字塔网络(Feature Pyramid Network,FPN)的思想。下面是一个简单的示例,演示如何在 ResNet 中添加多尺度的特征融合:
- import torch
- import torch.nn as nn
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, in_planes, planes, stride=1):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(self.expansion * planes)
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion * planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion * planes)
- )
- def forward(self, x):
- out = nn.ReLU()(self.bn1(self.conv1(x)))
- out = nn.ReLU()(self.bn2(self.conv2(out)))
- out = self.bn3(self.conv3(out))
- out += self.shortcut(x)
- out = nn.ReLU()(out)
- return out
- class ResNetWithFeaturePyramid(nn.Module):
- def __init__(self, block, num_blocks, num_classes=1000):
- super(ResNetWithFeaturePyramid, self).__init__()
- self.in_planes = 64
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
- self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
- self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
- self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
- # 添加额外的卷积层用于构建特征金字塔
- self.extra_conv = nn.Conv2d(2048, 256, kernel_size=1, stride=1, bias=False)
- self.pyramid_conv1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, bias=False)
- self.pyramid_conv2 = nn.Conv2d(512, 256, kernel_size=1, stride=1, bias=False)
- self.pyramid_conv3 = nn.Conv2d(256, 256, kernel_size=1, stride=1, bias=False)
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(256, num_classes)
- def _make_layer(self, block, planes, num_blocks, stride):
- strides = [stride] + [1] * (num_blocks - 1)
- layers = []
- for stride in strides:
- layers.append(block(self.in_planes, planes, stride))
- self.in_planes = planes * block.expansion
- return nn.Sequential(*layers)
- def forward(self, x):
- out = nn.ReLU()(self.bn1(self.conv1(x)))
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = self.layer4(out)
- # 获取不同层次的特征
- c4 = out
- c3 = self.layer3(out)
- c2 = self.layer2(c3)
- c1 = self.layer1(c2)
- # 构建特征金字塔
- p4 = self.pyramid_conv1(c4)
- p3 = self.pyramid_conv2(c3)
- p2 = self.pyramid_conv3(c2)
- # 从高层到低层进行上采样和融合
- p3 = p3 + nn.functional.interpolate(p4, scale_factor=2, mode='nearest')
- p2 = p2 + nn.functional.interpolate(p3, scale_factor=2, mode='nearest')
- # 降采样
- p2 = nn.functional.interpolate(p2, scale_factor=0.5, mode='nearest')
- # 使用额外的卷积层
- p1 = self.extra_conv(c1)
- # 融合所有尺度的特征
- fused_feature = p1 + p2 + p3
- # 全局平均池化和全连接层
- out = self.avgpool(fused_feature)
- out = out.view(out.size(0), -1)
- out = self.fc(out)
- return out
- def ResNet50WithFeaturePyramid():
- return ResNetWithFeaturePyramid(Bottleneck, [3, 4, 6, 3])
- # 创建 ResNet-50 模型
- resnet50_with_fpn = ResNet50WithFeaturePyramid()
- # 打印模型结构
- print(resnet50_with_fpn)
这个代码示例中,我添加了额外的卷积层和三个特征金字塔层,以便从不同的卷积层获得特征并进行融合。大家可以根据任务需求进行更改和优化。特征金字塔的思想能够提供更好的多尺度信息,有助于提高模型对不同目标大小的适应性。
声明
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。
在线投稿:投稿 站长QQ:1888636
后台-插件-广告管理-内容页尾部广告(手机) |