您现在的位置是:首页 > 技术教程 正文

CCF-CSP真题《202305-2 矩阵运算》思路+python,c++满分题解

admin 阅读: 2024-03-22
后台-插件-广告管理-内容页头部广告(手机)

题目背景

Softmax(Q×KTd)×V 是 Transformer 中注意力模块的核心算式,其中 Q、K 和 V 均是 n 行 d 列的矩阵,KT 表示矩阵 K 的转置,× 表示矩阵乘法。

问题描述

为了方便计算,顿顿同学将 Softmax 简化为了点乘一个大小为 n 的一维向量 W:
(W⋅(Q×KT))×V
点乘即对应位相乘,记 W(i) 为向量 W 的第 i 个元素,即将 (Q×KT) 第 i 行中的每个元素都与 W(i) 相乘。

现给出矩阵 Q、K 和 V 和向量 W,试计算顿顿按简化的算式计算的结果。

输入格式

从标准输入读入数据。

输入的第一行包含空格分隔的两个正整数 n 和 d,表示矩阵的大小。

接下来依次输入矩阵 Q、K 和 V。每个矩阵输入 n 行,每行包含空格分隔的 d 个整数,其中第 i 行的第 j 个数对应矩阵的第 i 行、第 j 列。

最后一行输入 n 个整数,表示向量 W。

输出格式

输出到标准输出中。

输出共 n 行,每行包含空格分隔的 d 个整数,表示计算的结果。

样例输入

3 2
1 2
3 4
5 6
10 10
-20 -20
30 30
6 5
4 3
2 1
4 0 -5

样例输出

480 240
0 0
-2200 -1100

子任务

70 的测试数据满足:n≤100 且 d≤10;输入矩阵、向量中的元素均为整数,且绝对值均不超过 30。

全部的测试数据满足:n≤104 且 d≤20;输入矩阵、向量中的元素均为整数,且绝对值均不超过 1000。

提示

请谨慎评估矩阵乘法运算后的数值范围,并使用适当数据类型存储矩阵中的整数。

标签:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

在线投稿:投稿 站长QQ:1888636

后台-插件-广告管理-内容页尾部广告(手机)
关注我们

扫一扫关注我们,了解最新精彩内容

搜索