机器学习实战:Python基于Logistic逻辑回归进行分类预测(一)
后台-插件-广告管理-内容页头部广告(手机) |
目录
- 1 前言
- 1.1 Logistic回归的介绍
- 1.2 Logistic回归的应用
- 2 iris数据集数据处理
- 2.1 导入函数
- 2.2 导入数据
- 2.3 简单数据查看
- 3 可视化
- 3.1 条形图/散点图
- 3.2 箱线图
- 3.3 三维散点图
- 4 建模预测
- 4.1 二分类预测
- 4.2 多分类预测
- 5 讨论
1 前言
1.1 Logistic回归的介绍
逻辑回归(Logistic regression,简称LR)是一种经典的二分类算法,它将输入特征与一个sigmoid函数进行线性组合,从而预测输出标签的概率。该算法常被用于预测离散的二元结果,例如是/否、真/假等。
优点:
-
实现简单。Logistic回归的参数可以用极大似然估计法进行求解,算法本身非常简单。
-
速度快。Logistic回归计算量小,训练速度快。
-
输出结果易于理解。Logistic回归的输出结果是概率,易于解释。
-
容易扩展。Logistic回归可用于多分类问题和不平衡数据集。
缺点:
-
只适用于线性可分的问题。当特征之间存在非线性关系时,Logistic回归的效果会受到限制。
-
对异常值敏感。由于Logistic回归使用了sigmoid函数,对于异常值非常敏感。
-
容易欠拟合。当特征与目标变量之间的关系非常复杂时,Logistic回归很容易出现欠拟合现象。
1.2 Logistic回归的应用
Logistic回归广泛应用于许多领域,包括:
-
金融风险评估。银行和信用卡公司使用Logistic回归来评估借款人的信用风险,预测贷款违约的概率。
-
医学诊断。Logistic回归可以用于预测患者是否患有某种疾病或病情的严重程度。
-
市场分析。Logistic回归可以用于预测产品或服务的市场需求,并帮助企业做出更好的决策。
-
自然语言处理。Logistic回归可以用于文本分类,例如判断一段文本是否属于某个主题或情感极性。
-
图像处理。Logistic回归可以用于图像分类和目标检测,例如识别数字和字母。
总之,Logistic回归是一种灵活的算法,可以应用于许多不同的领域和问题,特别是在需要预测二元结果的场景中表现出色。
2 iris数据集数据处理
iris数据集共有150个样本,目标变量为花的类别其都属于鸢尾属下的三个亚属(target),分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。
四个特征,分别是花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal width)。
2.1 导入函数
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns- 1
- 2
- 3
- 4
2.2 导入数据
from sklearn.datasets import load_iris data = load_iris() iris_target = data.target iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式- 1
- 2
- 3
- 4
2.3 简单数据查看
## 查看数据的整体信息 iris_features.info() ## 查看每个类别数量 pd.Series(iris_target).value_counts()- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 1
- 2
3 可视化
3.1 条形图/散点图
## 合并标签和特征信息 iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改 iris_all['target'] = iris_target ## 可视化 sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target') plt.show()- 1
- 2
- 3
- 4
- 5
- 6
- 7
从结果可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。
3.2 箱线图
## 构建画布2x2 import matplotlib.pyplot as plt fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8)) ## 可视化 for i, col in enumerate(iris_features.columns): sns.boxplot(ax=axes[i//2, i%2], x='target', y=col, saturation=0.5, palette='pastel', data=iris_all) axes[i//2, i%2].set_title(col) plt.tight_layout() plt.show()- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
3.3 三维散点图
from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10,8)) ax = fig.add_subplot(111, projection='3d') iris_all_class0 = iris_all[iris_all['target']==0].values iris_all_class1 = iris_all[iris_all['target']==1].values iris_all_class2 = iris_all[iris_all['target']==2].values # 'setosa'(0), 'versicolor'(1), 'virginica'(2) ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa') ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor') ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica') plt.legend() plt.show()- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
4 建模预测
4.1 二分类预测
## 划分为训练集和测试集 from sklearn.model_selection import train_test_split ## 选择其类别为0和1的样本 (不包括类别为2的样本) iris_features_part = iris_features.iloc[:100] iris_target_part = iris_target[:100] ## 训练集测试集7/3分 x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.3, random_state = 2020) ## 从sklearn中导入逻辑回归模型 from sklearn.linear_model import LogisticRegression clf = LogisticRegression(random_state=0, solver='lbfgs') # 训练模型 clf.fit(x_train, y_train)- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 1
- 2
- 3
- 4
- 5
- 1
- 2
- 3
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
结果准确度为1,代表所有的样本都预测正确了,绝杀
4.2 多分类预测
## 训练集测试集还是7/3分 x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.3, random_state = 2020) ## 建模 clf = LogisticRegression(random_state=0, solver='lbfgs') ## 训练模型 clf.fit(x_train, y_train)- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
比起二分类的1略小,但均大于0.9
## 查看混淆矩阵 confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test) print('The confusion matrix result:\n',confusion_matrix_result) # 可视化 plt.figure(figsize=(8, 6)) sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues') plt.xlabel('Predicted labels') plt.ylabel('True labels') plt.show()- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
根据结果发现,其在三分类的结果的预测准确度上有所下降,但好在测试集还有91%,这是由于versicolor(1)和 virginica(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。
5 讨论
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数)
原理的简单解释:当z=>0时, y=>0.5,分类为1,当z<0时, y<0.5,分类为0,其对应的y值我们可以视为类别1的概率预测值,而多分类其实就是将多个二分类的逻辑回归组合。
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。
在线投稿:投稿 站长QQ:1888636
后台-插件-广告管理-内容页尾部广告(手机) |