python金融数据分析和可视化--03利用Akshare获取股票数据
admin 阅读: 2024-03-24
后台-插件-广告管理-内容页头部广告(手机) |
02利用Akshare获取股票数据
1. AKShare 的介绍
AKShare 是基于 Python 的财经数据接口库,目的是实现对股票、期货、期权、基金、外汇、债券、指数、加密货币等金融产品的基本面数据、实时和历史行情数据、衍生数据从数据采集、数据清洗到数据落地的一套工具,主要用于学术研究目的。
AKShare 的特点是获取的是相对权威的财经数据网站公布的原始数据,通过利用原始数据进行各数据源之间的交叉验证,进而再加工,从而得出科学的结论。
2. 安装 AKShare
pip install akshare
3. 获取股票数据
AKShare 股票数据
AKShare github
- # 股票市场总貌
- import akshare as ak
- # 上海证券交易所
- # http://www.sse.com.cn/market/stockdata/statistic/
- def sh_df():
- stock_sse_summary_df = ak.stock_sse_summary()
- print(stock_sse_summary_df)
- # 深圳证券交易所
- # 证券类别统计
- # http://www.szse.cn/market/overview/index.html
- def sz_df():
- stock_szse_summary_df = ak.stock_szse_summary()
- print(stock_szse_summary_df)
- # 深圳证券交易所
- # 地区交易排序
- # http://www.szse.cn/market/overview/index.html
- def sz_area():
- stock_szse_area_summary_df = ak.stock_szse_area_summary(date="202203")
- print(stock_szse_area_summary_df)
- # 深圳证券交易所
- # 股票行业成交
- # http://docs.static.szse.cn/www/market/periodical/month/W020220511355248518608.html
- def sz_sector():
- stock_szse_sector_summary_df = ak.stock_szse_sector_summary(symbol="当年", date="202204")
- print(stock_szse_sector_summary_df)
- # 上海证券交易所
- # 每日概况
- # http://www.sse.com.cn/market/stockdata/overview/day/
- def sh_day():
- stock_sse_deal_daily_df = ak.stock_sse_deal_daily(date="20201111")
- print(stock_sse_deal_daily_df)
- def get_account_statistics():
- # 股票账户统计月度
- """
- 输出参数
- 名称 类型 描述
- 数据日期 object -
- 新增投资者-数量 float64 注意单位: 万户
- 新增投资者-环比 float64 -
- 新增投资者-同比 float64 -
- 期末投资者-总量 float64 注意单位: 万户
- 期末投资者-A股账户 float64 注意单位: 万户
- 期末投资者-B股账户 float64 注意单位: 万户
- 沪深总市值 float64 -
- 沪深户均市值 float64 注意单位: 万
- 上证指数-收盘 float64 -
- 上证指数-涨跌幅 float64 -
- """
- account = ak.stock_account_statistics_em()
- account.set_index("数据日期", inplace=True) # 设置索引值
- account.to_csv("I:\\bianchengxx\\pythonxx\\backtrader_001\\datas\\stock_account_statistics.csv")
- print(account)
- if __name__ == '__main__':
- # sh_df()
- # sz_df()
- # sz_area()
- # sz_sector()
- # sh_day()
- get_account_statistics()
- # 个股信息查询
- # http://quote.eastmoney.com/concept/sh603777.html?from=classic
- import akshare as ak
- df = ak.stock_individual_info_em(symbol="002624")
- print(df)
- # 实时行情数据-东财
- # 沪深京 A 股
- # http://quote.eastmoney.com/center/gridlist.html#hs_a_board
- import akshare as ak
- # 实时行情数据-东财
- # 沪深京 A 股
- # 单次返回所有沪深京 A 股上市公司的实时行情数据
- def em_spot():
- stock_zh_a_spot_em_df = ak.stock_zh_a_spot_em()
- print(stock_zh_a_spot_em_df)
- # 实时行情数据-东财
- # 沪 A 股
- # http://quote.eastmoney.com/center/gridlist.html#sh_a_board
- def em_sha_spot():
- stock_sh_a_spot_em_df = ak.stock_sh_a_spot_em()
- print(stock_sh_a_spot_em_df)
- # 实时行情数据-东财
- # 深 A 股
- # http://quote.eastmoney.com/center/gridlist.html#sz_a_board
- def em_sza_spot():
- stock_sz_a_spot_em_df = ak.stock_sz_a_spot_em()
- print(stock_sz_a_spot_em_df)
- # 实时行情数据-东财
- # 京 A 股
- # http://quote.eastmoney.com/center/gridlist.html#bj_a_board
- def em_bja_spot():
- stock_bj_a_spot_em_df = ak.stock_bj_a_spot_em()
- print(stock_bj_a_spot_em_df)
- # 实时行情数据-东财
- # 新股
- # http://quote.eastmoney.com/center/gridlist.html#newshares
- def em_new_spot():
- stock_new_a_spot_em_df = ak.stock_new_a_spot_em()
- print(stock_new_a_spot_em_df)
- # 实时行情数据-东财
- # 科创板
- # http://quote.eastmoney.com/center/gridlist.html#hs_a_board
- def em_kc_spot():
- stock_kc_a_spot_em_em_df = ak.stock_kc_a_spot_em()
- print(stock_kc_a_spot_em_em_df)
- # 实时行情数据-新浪
- # http://vip.stock.finance.sina.com.cn/mkt/#hs_a
- def xl_a_spot():
- stock_zh_a_spot_df = ak.stock_zh_a_spot()
- print(stock_zh_a_spot_df)
- if __name__ == "__main__":
- em_spot()
- # em_sha_spot()
- # em_sza_spot()
- # 历史行情数据-东财
- # https://quote.eastmoney.com/concept/sh603777.html?from=classic
- import akshare as ak
- import pandas as pd
- pd.set_option('expand_frame_repr', False) # True就是可以换行显示。设置成False的时候不允许换行
- pd.set_option('display.max_columns', None) # 显示所有列
- # pd.set_option('display.max_rows', None) # 显示所有行
- pd.set_option('colheader_justify', 'centre') # 显示居中
- def a_hist():
- # period
- # str
- # choice of {'daily', 'weekly', 'monthly'}
- # start_date
- # str
- # 开始查询的日期
- # end_date
- # str
- # 结束查询的日期
- # adjust
- # str
- # 默认返回不复权的数据;
- # qfq: 返回前复权后的数据;
- # hfq: 返回后复权后的数据
- stock_zh_a_hist_df = ak.stock_zh_a_hist(symbol="002624", period="weekly", start_date="20190301", end_date='20230907',
- adjust="qfq")
- print(stock_zh_a_hist_df)
- # 分时数据-东财
- # http://quote.eastmoney.com/concept/sh603777.html?from=classic
- # period str choice of {'1', '5', '15', '30', '60'};
- # adjust str choice of {'', 'qfq', 'hfq'}; '': 不复权, 'qfq': 前复权, 'hfq': 后复权,
- # 其中 1 分钟数据返回近 5 个交易日数据且不复权
- def a_hist_min():
- stock_zh_a_hist_min_em_df = ak.stock_zh_a_hist_min_em(symbol="002624", start_date="2023-01-01 09:30:00", end_date="2023-02-03 15:00:00", period='30', adjust='')
- print(stock_zh_a_hist_min_em_df)
- if __name__ == "__main__":
- a_hist()
- # a_hist_min()
4. 获取股票数据本地存储
- import akshare as ak
- import pandas as pd
- pd.set_option('expand_frame_repr', False) # True就是可以换行显示。设置成False的时候不允许换行
- pd.set_option('display.max_columns', None) # 显示所有列
- pd.set_option('display.max_rows', None) # 显示所有行
- pd.set_option('colheader_justify', 'centre') # 显示居中
- def download_hist(symbol="002624", period="daily", start="1990101", end="20230318", adjust="qfq"):
- stock_zh_a_hist_df = ak.stock_zh_a_hist(symbol=symbol, period=period, start_date=start, end_date=end,
- adjust=adjust)
- stock_zh_a_hist_df.sort_values("日期", inplace=True)
- stock_zh_a_hist_df.set_index("日期", inplace=True)
- if period=="daily":
- stock_zh_a_hist_df.to_csv("I:\\akshare_stock\\stock_datas\\day\\{}.csv".format(symbol))
- elif period=="weekly":
- stock_zh_a_hist_df.to_csv("I:\\akshare_stock\\stock_datas\\week\\{}.csv".format(symbol))
- elif period=="monthly":
- stock_zh_a_hist_df.to_csv("I:\\akshare_stock\\stock_datas\\month\\{}.csv".format(symbol))
- else:
- print("period错误")
- def download_hist_min(symbol="002624", start="1990-01-01 09:30:00", end="2023-02-03 15:00:00", period='30', adjust='qfq'):
- stock_zh_a_hist_min_em_df = ak.stock_zh_a_hist_min_em(symbol=symbol, start_date=start, end_date=end, period=period, adjust=adjust)
- stock_zh_a_hist_min_em_df.set_index("时间", inplace=True)
- stock_zh_a_hist_min_em_df.to_csv("I:\\akshare_stock\\stock_datas\\minute\\"+symbol+"_{}.csv".format(period))
- if __name__ == "__main__":
- df = pd.read_csv("I:\\akshare_stock\\stock_datas\\stock_list.csv")
- df.sort_values("symbol", inplace=True)
- code = list(df["ts_code"])
- print(len(code))
- for period in ['daily', 'weekly', 'monthly']:
- for i in range(0, len(code)):
- symbol = code[i].rstrip('.SZHBJ')
- download_hist(symbol=symbol, period=period)
- print(symbol)
- for period in ['1', '5', '15', '30', '60']:
- for i in range(0, len(code)):
- symbol = code[i].rstrip('.SZHBJ')
- download_hist_min(symbol=symbol, period=period)
- print(symbol)
5.将股票数据存到mysql数据库中
- """
- date:20210918
- 将CSV文件写入到MySQL中
- """
- import pandas as pd
- from sqlalchemy import create_engine
- def connect_db(db):
- engine = create_engine('mysql+pymysql://hao:671010@localhost:3306/{}?charset=utf8'.format(db))
- return engine
- def create_stock(akcode, db, date):
- # 读取本地CSV文件
- df = pd.read_csv(
- 'I:\\akshare_stock\\stock_datas\\' + date + '\\{}.csv'.format(akcode))
- engine = connect_db(db)
- # name='stocklist'全部小写否则会报错
- df.to_sql(name='ak_' + date + '_{}'.format(akcode), con=engine, index=False, if_exists='replace')
- def create_min_stock(akcode, db, date):
- # 读取本地CSV文件
- df = pd.read_csv(
- 'I:\\akshare_stock\\stock_datas\\minute\\'+akcode+'_{}.csv'.format(date))
- engine = connect_db(db)
- # name='stocklist'全部小写否则会报错
- df.to_sql(name='ak_' + akcode + '_{}'.format(date), con=engine, index=False, if_exists='replace')
- def read_csv(code):
- df = pd.read_csv('I:\\akshare_stock\\stock_datas\\{}.csv'.format(code))
- return df
- stockDB = 'akshare_stock'
- stockList = 'stock_list'
- create_stock(akcode=stockList, db=stockDB, date="day")
- df1 = read_csv(stockList)
- df1.sort_values("ts_code", inplace=True)
- li1 = list(df1['ts_code'])
- for date in ["day", "week", "month"]:
- for i in range(0, len(li1)):
- codeStock = li1[i].rstrip('.SHZBJ')
- create_stock(akcode=codeStock, db=stockDB, date=date)
- print(codeStock)
- for date in ['1', '5', '15', '30', '60']:
- for i in range(0, len(li1)):
- codeStock = li1[i].rstrip('.SHZBJ')
- create_min_stock(akcode=codeStock, db=stockDB, date=date)
- print(codeStock)
声明
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。
在线投稿:投稿 站长QQ:1888636
后台-插件-广告管理-内容页尾部广告(手机) |