Python 第三代非支配排序遗传算法(NSGA-III)求解多目标高次函数的帕累托前沿
后台-插件-广告管理-内容页头部广告(手机) |
系列文章目录
文章目录
前言
我前面有博客介绍了第二代非支配排序遗传算法(NSGA-II)求解多目标高次函数的帕累托前沿的代码,本篇博客则是介绍NSGA-III求解多目标高次函数的帕累托前沿。
一、模型的建立
研究的模型为:min(y1=
四、输出的结果
分别输出了各个帕累托前沿解及帕累托前沿的离散图像,红色点部分为帕累托前沿解:
总结
因为NSGA-III增加了几个参数,因此效率很依赖于对这些参数的调整,总体运行速度是低于NSGA-II的,但是它和NSGA-II想比,还是具备以下优点:
-
高效性:NSGA-III和NSGA-II都采用非支配排序和拥挤度距离计算策略,能够有效地维护种群的多样性,从而提高收敛速度和搜索效率。
-
稳健性:NSGA-III不依赖于特定的问题结构或形式。这些特性使得该算法具有良好的稳健性和可移植性,适用于各种多目标优化问题。
-
解的质量:NSGA-III在针对分布不均匀的Pareto前沿的搜索能力上比NSGA-II更出色,解的质量更高。
-
多样性:NSGA-III比NSGA-II更加注重多样性的保持,因此能够在搜索过程中保持更好的种群多样性,并找到更多的Pareto最优解。
-
可扩展性:NSGA-III和NSGA-II都可以很容易地扩展到处理带约束的多目标优化问题,例如在NSGA-III基础上进行改进,提出了NSGA-III-G和MOEA/D-NSGA-III等算法。
总的来说,NSGA-III和NSGA-II是经典的多目标优化算法,在实际应用中广泛使用。两种算法都有各自的优势和适用范围,在具体问题中需要根据实际情况选择合适的算法。
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。
在线投稿:投稿 站长QQ:1888636
后台-插件-广告管理-内容页尾部广告(手机) |