您现在的位置是:首页 > 技术教程 正文

Tensorflow-gpu保姆级安装教程(Win11, Anaconda3,Python3.9)

admin 阅读: 2024-03-25
后台-插件-广告管理-内容页头部广告(手机)

Tensorflow-gpu 保姆级安装教程(Win11, Anaconda3,Python3.9)

    • 前言
    • Tensorflow-gpu版本安装的准备工作
    • (一)、查看电脑的显卡:
    • (二) 、Anaconda的安装
    • (三)、cuda下载和安装
    • (四)、cudnn下载安装
    • (五)、配置环境变量
    • (六)、创建 tensorflow 环境
    • (七)、测试 Tensorflow-gpu 是否安装成功
    • 卸载重装

前言

CPU版本和GPU版本的区别主要在于运行速度,GPU版本运行速度更快,所以如果电脑显卡支持cuda,推荐安装gpu版本的。

  • CPU版本,无需额外准备,CPU版本一般电脑都可以安装,无需额外准备显卡的内容,(如果安装CPU版本请参考网上其他教程!)

  • GPU版本,需要提前下载 cuda 和 cuDNN。(本文为GPU版本安装教程。)

Tensorflow-gpu版本安装的准备工作

重要的事说三遍:

安装前 一定 要查看自己电脑的环境配置,然后查询Tensorflow-gpu、Python、 cuda 、 cuDNN 版本关系,要 一 一对应

安装前 一定 要查看自己电脑的环境配置,然后查询Tensorflow-gpu、Python、 cuda 、 cuDNN 版本关系,要 一 一对应

安装前 一定 要查看自己电脑的环境配置,然后查询Tensorflow-gpu、Python、 cuda 、 cuDNN 版本关系,要 一 一对应

Tensorflow-gpu 与 Python、 cuda、cuDNN 版本关系查询

在这里插入图片描述

我的安装环境为:

操作系统显卡Python
win11NVIDIA GeForce RTX20503.9.13

我的tensorflow-gpu 安装版本为:

tensorflow-gpucudacuDNN
tensorflow-gpu 2.7.0cuda 11.5.2cuDNN 8.3.2

注: 我这个对应关系是在网上查询别人安装成功的案例,不要自己随意组合,不然很容易安装失败,或者就按官网查询的组合安装,安装过程是一样的!

(一)、查看电脑的显卡:

1)、右键此电脑→右键选管理→设备管理器→显示适配器
主要看独显:GeForce RTX 2050

在这里插入图片描述

可以看到点击出现了NVIDIA GeForce ...,即你的电脑显卡型号。

  • 如果有出现,那就表示可以使用Tensorflow-gpu版本,如果没有的就只能老老实实安装CPU版咯。
  • 然后可以去NIVIDIA官网查询一下自己电脑显卡的算力:https://developer.nvidia.com/cuda-gpus,建议算力>=3.5安装。

在这里插入图片描述

我的型号没有查到,NVIDIA近几年显卡的算力一般是够的。

2)、右键显卡→属性→驱动程序,可以查看显卡的驱动程序:

在这里插入图片描述

3)、查看GPU驱动版本,也就是我们“CUDA Version”,Windows 11 版本中一般是12.0版本,键盘上同时按win +r,输入cmd,打开命令窗口,在命令窗口输入:

nvidia-smi
  • 1

在这里插入图片描述

(二) 、Anaconda的安装

安装tensorflow提前安装好Anaconda。这里我也不重点介绍了,我之前也重点详细地写过相关文章:
Anaconda安装-超详细版(2023)

Anaconda安装成功后,进入下面tensorflow的安装!

后面tensorflow的安装可成三步:

  1. cuda的安装
  2. cuDNN的神经网络加速库安装
  3. 配置环境变量

(三)、cuda下载和安装

下载cuda和cuDNN。在官网上下载对应的cuda和cuDNN,版本可以低于上面查到的CUDA版本但不能高于电脑支持的版本。

  • cuda下载地址:CUDA Toolkit Archive | NVIDIA Developer;
  • cudnn下载地址:cuDNN Archive | NVIDIA Developer。

1)、下载:

我下载的是CUDA Toolkit 11.5.2, 点击前面的 CUDA Toolkit 11.5.2
在这里插入图片描述

选择相应的系统、版本等选项,点击Download下载:
在这里插入图片描述
2)、安装

a、 双击安装包,此时会出现一个提示框,让你选择临时解压位置(该位置的内容在你安装完cuda之后会自动删除),这里默认即可,点击ok。

在这里插入图片描述

b、点击同意并继续:

在这里插入图片描述

c、完成上一步后,选择自定义,然后点下一步:

在这里插入图片描述

d、完成上一步,这里CUDA一定要勾选上,下面的可选可不选,对后续没有影响。

  • 在组件CUDA一栏中,取消勾选Visual Studio Integration(因为我们并没有使用Visual Stduio环境,即使勾选上了也会安装失败)

在这里插入图片描述

  • 在Driver components一栏比较Display Driver的新版本和当前版本的信息。
    • 若当前版本高于新版本,则取消勾选Display Driver;
    • 若当前版本低于新版本,则保留默认安装信息即可,否则电脑会死机或者卡顿,甚至可能蓝屏。!!!

在这里插入图片描述

e、这个安装位置可以自己改。要截图记录一下你装到哪里了,后面要用到!我选择了默认安装位置。

在这里插入图片描述

f、正在安装

在这里插入图片描述

g、安装成功!

在这里插入图片描述

点击关闭即可!

在这里插入图片描述

检查环境变量

完成安装后,检查一下环境变量是否存在,一般安装完成会自动配置好环境变量,若是没有,则需手动配置,具体过程如下。

  1. 打开 电脑属性,找到 高级系统设置,选择 环境变量 打开。

  2. 查看是否有以下系统变量,没有则需要自行添加,对应图片上的名称和值,配置你电脑CUDA安装所在的位置。

在这里插入图片描述

  1. 打开系统变量的Path,查看是否有一下两条内容,若没有则需自行添加,一定要配置对安装的位置。

在这里插入图片描述

配置好环境变量后,我们检查下CUDA是否安装成功。

  1. 打开cmd,输入以下命令查看CUDA是否安装成功(二选一)
    如果不能显示以下信息,则说明安装失败。
nvcc -V nvcc --version
  • 1
  • 2

在这里插入图片描述

  • 还可以查看CUDA 设置的环境变量。
set cuda
  • 1

在这里插入图片描述

  • 我们还可以搜索CUDA 的安装目录,找到“nvcc.exe”文件。

在这里插入图片描述

CUDA的安装就结束了,接下来下载解压cuDNN文件。

(四)、cudnn下载安装

CUDA并不是实现GPU的神经网络加速库,如果希望针对的是神经网络进行加速,我们还需要安装cuDNN神经网络加速库。

  • cuDNN并非是应用程序,而是几个文件包,下载后把它复制到CUDA 的目录下即可。
    下载地址:cuDNN Archive | NVIDIA Developer。

  • 第一次单击下载时,会让你先注册登录,然后再进行下载,注册过程认真填写内容就没问题,此处略过,接下来进入下载环节。

1)、下载:

下载对应版本的cuDNN。这里选择的是cuDNN v8.3.2 for CUDA 11.5。

在这里插入图片描述

  1. 、下载解压好安装包后,我们解压可以看到有四个文件:
    在这里插入图片描述

3)、教程的这一步要格外注意

  • 要将cudnn文件中的对应文件夹下的所有文件复制 到对应的安装目录中,
  • 不是 把cudnn文件中的文件夹复制过去。eg:复制的不是cudnn中的bin文件夹,而是bin文件夹下的所有文件。(有重复的文件是正常的,覆盖掉就好!)

在这里插入图片描述

  1. 打开cudnn文件中的bin文件夹,将该文件夹中所有的 文件复制粘贴 到CUDA\v11.5\bin文件夹中:

在这里插入图片描述

  1. 打开cudnn文件中的include文件夹,将该文件夹中所有的 文件复制粘贴 到CUDA\v11.5\include文件夹中:

在这里插入图片描述

  1. 打开cudnn文件中的lib文件夹,将该文件夹中所有的 文件复制粘贴 到CUDA\v11.5\lib\x64文件夹中:

在这里插入图片描述

  1. 打开cudnn文件中的剩下的文件复制粘贴 到CUDA\v11.5文件夹中:

在这里插入图片描述
cuDNN其实就是CUDA的一个补丁而已,专为深度学习运算进行优化的,然后我们再添加环境变量!继续往下走。

(五)、配置环境变量

  1. 、打开系统变量的Path,在系统变量的path路径下添加以下路径:(具体要根据自己的安装路径下做调整)
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\libnvvp C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\lib\x64
  • 1
  • 2
  • 3
  • 4

添加好后是这样的:

在这里插入图片描述

2)、配置好环境后,我们需要验证环境变量是否配置成功:

打开cmd,进入自己CUDA的安装下路径...\CUDA\v11.5\extras\demo_suite:,我是默认路径,所以我的是:

cd \Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5\extras\demo_suite
  • 1

然后分别执行以下两个命令:

.\bandwidthTest.exe .\deviceQuery.exe
  • 1
  • 2

在这里插入图片描述
在这里插入图片描述

如果Result都为PASS的话则配置成功!

3)、都安装好之后,我们可以继续输入nvidia-smi查看CUDA的信息,然后根据安装版本的信息再去实现其他的库(环境)安装和使用!

nvidia-smi
  • 1

在这里插入图片描述

如图所示,可以看到驱动的版本是527.41;最高支持的CUDA版本是12.0版本。

(六)、创建 tensorflow 环境

我这里是使用Anaconda(如果选择这一步,就不需要额外下载python,以及各种常用工具包,它会打包下载好)

1)、打开anaconda prompt

在这里插入图片描述

2)、创建tensorflow环境,输入命令:conda create -n tensorflow python=3.9,表示创建一个名字为tensorflow的环境,这个环境用的python版本是3.9版本的,如果默认创建,会在C盘!

w11下载anaconda在d盘,新建的虚拟环境总是在c盘怎么解决

conda create -n tensorflow python=3.9
  • 1

在这里插入图片描述

3)、创建成功后,输入命令:conda env list,可以看到tensorflow环境已经创建,星号为当前所在环境(基础环境base)。

conda env list
  • 1

在这里插入图片描述

4)、进入环境,输入命令:activate tensorflow,就可以进入tensorflow环境中

conda activate tensorflow
  • 1

在这里插入图片描述

如果要退出环境,输入:

conda deactivate
  • 1

5)、因为我的conda环境在D盘中,所以将路径改了以下。如果anaconda安装的时候是默认路径,这一步不需要。

d: cd \WorkSoftware\Install\Anaconda3\envs\tensorflow\
  • 1
  • 2

在这里插入图片描述

6)、 安装指定版本的tensorflow-gpu,,我安装的是2.7.0,根据你自己的配套版本安装,输入命令:

pip install tensorflow-gpu==2.7.0 -i https://pypi.mirrors.ustc.edu.cn/simple
  • 1

在这里插入图片描述
无报错结束应该是装好了。

7)、打开python环境,导入tensorflow包进行测试 ,查看tensorflow的版本信息, 输入命令:

import tensorflow as tf
  • 1
  • 如果导入包有以下报错(没有报错请忽略!):
(tensorflow) C:\Users\Rmzh>python Python 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:28:38) [MSC v.1929 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf Traceback (most recent call last): File "", line 1, in <module> File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\__init__.py", line 41, in <module> from tensorflow.python.tools import module_util as _module_util File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\__init__.py", line 41, in <module> from tensorflow.python.eager import context File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\eager\context.py", line 33, in <module> from tensorflow.core.framework import function_pb2 File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\core\framework\function_pb2.py", line 16, in <module> from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2 File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py", line 16, in <module> from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2 File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\core\framework\tensor_pb2.py", line 16, in <module> from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2 File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py", line 16, in <module> from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2 File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\core\framework\tensor_shape_pb2.py", line 36, in <module> _descriptor.FieldDescriptor( File "D:\WorkSoftware\Install\Anaconda3\envs\tensorflow\lib\site-packages\google\protobuf\descriptor.py", line 561, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 解决上述报错,输入exit()退出python环境导入以下包:
pip install protobuf==3.19.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn
  • 1

然后重新进入python 环境,查看tensorflow的版本信息, 输入命令:

import tensorflow as tf tf.__version__
  • 1
  • 2

在这里插入图片描述

退出tensorflow环境:

conda deactivate
  • 1

在这里插入图片描述
同时,conda控制台是默认打开base环境的,如果想管理这一设置

conda config --set auto_activate_base false / true
  • 1

(七)、测试 Tensorflow-gpu 是否安装成功

  1. 打开Anaconda,选择tensorflow环境,打开spyder,第一次打开需要安装Spyder,直接点下方的install即可。

在这里插入图片描述

  1. 输入以下测试代码:
import tensorflow as tf print(tf.__version__) print(tf.test.gpu_device_name()) print(tf.config.experimental.set_visible_devices) print('GPU:', tf.config.list_physical_devices('GPU')) print('CPU:', tf.config.list_physical_devices(device_type='CPU')) print(tf.config.list_physical_devices('GPU')) print(tf.test.is_gpu_available()) # 输出可用的GPU数量 print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) # 查询GPU设备
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

  • 出现了当前环境tensorflow的版本以及一些其他信息,我的版本是2.7.0,
  • 如果下面出现了True, 那就表明我们的tensorflow-gpu 已经成功的安装好并且能够正常使用了!
  1. 下面来测试一下GPU的运算速度吧!
import tensorflow as tf import timeit #指定在cpu上运行 def cpu_run(): with tf.device('/cpu:0'): cpu_a = tf.random.normal([10000, 1000]) cpu_b = tf.random.normal([1000, 2000]) c = tf.matmul(cpu_a, cpu_b) return c #指定在gpu上运行 def gpu_run(): with tf.device('/gpu:0'): gpu_a = tf.random.normal([10000, 1000]) gpu_b = tf.random.normal([1000, 2000]) c = tf.matmul(gpu_a, gpu_b) return c cpu_time = timeit.timeit(cpu_run, number=10) gpu_time = timeit.timeit(gpu_run, number=10) print("cpu:", cpu_time, " gpu:", gpu_time)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

在这里插入图片描述

  • 可以看到gpu的速度比cpu还是要快上不少的!
  • 对于机器学习中神经网络模型的训练来说,可以大幅度加快我们的训练进程帮我们节约许多时间,还是十分不错的!

卸载重装

如果安装出错可以卸载重装:
tensorflow-gpu卸载

注:个人安装过程,仅供学习参考,如有不足,欢迎指正!

标签:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

在线投稿:投稿 站长QQ:1888636

后台-插件-广告管理-内容页尾部广告(手机)
关注我们

扫一扫关注我们,了解最新精彩内容

搜索
排行榜