您现在的位置是:首页 > 技术教程 正文

BertTokenizer的使用方法(超详细)

admin 阅读: 2024-03-20
后台-插件-广告管理-内容页头部广告(手机)

导入

from transformers import BertTokenizer from pytorch_pretrained import BertTokenizer
  • 1
  • 2

以上两行代码都可以导入BerBertTokenizer,transformers是当下比较成熟的库,pytorch_pretrained是google提供的源码(功能不如transformers全面)

加载

tokenizer = BertTokenizer.from_pretrained('bert_pretrain')
  • 1

数据

首先定义一些数据:

sents = [ '人工智能是计算机科学的一个分支。', '它企图了解智能的实质。', '人工智能是一门极富挑战性的科学。', ]
  • 1
  • 2
  • 3
  • 4
  • 5

tokenize

将句子拆分为token,并不映射为对应的id

token = tokenizer.tokenize(sents[0]) print(token) # 输出:['人', '工', '智', '能', '是', '计', '算', '机', '科', '学', '的', '一', '个', '分', '支', '。']
  • 1
  • 2
  • 3

convert_tokens_to_ids

将token映射为其对应的id(ids是我们训练中真正会用到的数据)

ids = tokenizer.convert_tokens_to_ids(token) print(ids) #输出:[8, 35, 826, 52, 10, 159, 559, 98, 147, 18, 5, 7, 27, 59, 414, 12043]
  • 1
  • 2
  • 3

同理convert_ids_to_tokens,就是上述方法的逆过程

encode(从此方法开始,只有transformers可以实现)

convert_tokens_to_ids是将分词后的token转化为id序列,而encode包含了分词和token转id过程,即encode是一个更全的过程,另外,encode默认使用basic的分词工具,以及会在句子前和尾部添加特殊字符[CLS]和[SEP],无需自己添加。从下可以看到,虽然encode直接使用tokenizer.tokenize()进行词拆分,会保留头尾特殊字符的完整性,但是自己也会额外添加特殊字符。

token = tokenizer.tokenize(sents[0]) print(token) ids = tokenizer.convert_tokens_to_ids(token) print(ids) ids_encode = tokenizer.encode(sents[0]) print(ids_encode) token_encode = tokenizer.convert_ids_to_tokens(ids_encode) print(token_encode) # 输出结果: #['人', '工', '智', '能', '是', '计', '算', '机', '科', '学', '的', '一', '个', '分', '支', '。'] #[8, 35, 826, 52, 10, 159, 559, 98, 147, 18, 5, 7, 27, 59, 414, 12043] #[1, 8, 35, 826, 52, 10, 159, 559, 98, 147, 18, 5, 7, 27, 59, 414, 12043, 2] #['[CLS]', '人', '工', '智', '能', '是', '计', '算', '机', '科', '学', '的', '一', '个', '分', '支', '。', '[SEP]']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

从运行结果可以看到encode确实在首尾增加了特殊词元[cls]和[sep]也就是1和2

encode_plus

返回更多相关信息:

ids = tokenizer.encode_plus(sents[0]) print(ids) # {'input_ids': [1, 8, 35, 826, 52, 10, 159, 559, 98, 147, 18, 5, 7, 27, 59, 414, 12043, 2], #'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], #'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
  • 1
  • 2
  • 3
  • 4
  • 5

相关参数介绍:

out = tokenizer.encode_plus( text=sents[0], text_pair=sents[1], #当句子长度大于max_length时,截断 truncation=True, #一律补零到max_length长度 padding='max_length', max_length=30, add_special_tokens=True, #可取值tf,pt,np,默认为返回list return_tensors=None, #返回token_type_ids return_token_type_ids=True, #返回attention_mask return_attention_mask=True, #返回special_tokens_mask 特殊符号标识 return_special_tokens_mask=True, #返回offset_mapping 标识每个词的起止位置,这个参数只能BertTokenizerFast使用 #return_offsets_mapping=True, #返回length 标识长度 return_length=True, ) for k, v in out.items(): print(k, ':', v) #input_ids : [1, 8, 35, 826, 52, 10, 159, 559, 98, 147, 18, 5, 7, 27, 59, 414, 12043, 2, 380, 258, 429, 15, 273, 826, 52, 5, 79, 207, 12043, 2] #token_type_ids : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] #special_tokens_mask : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] #attention_mask : [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] #length : 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

batch_encode_plus

以 batch 的形式去编码句子

ids = tokenizer.batch_encode_plus([x for x in sents]) print(ids) # { #'input_ids': [[1, 8, 35, 826, 52, 10, 159, 559, 98, 147, 18, 5, 7, 27, 59, 414, 12043, 2], [1, 380, 258, 429, 15, 273, 826, 52, 5, 79, 207, 12043, 2], [1, 8, 35, 826, 52, 10, 7, 232, 456, 595, 1373, 267, 92, 5, 147, 18, 12043, 2]], #'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], #'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
标签:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

在线投稿:投稿 站长QQ:1888636

后台-插件-广告管理-内容页尾部广告(手机)
关注我们

扫一扫关注我们,了解最新精彩内容

搜索