您现在的位置是:首页 > 技术教程 正文

LLM预备知识、工具篇——LLM+LangChain+web UI的架构解析

admin 阅读: 2024-03-27
后台-插件-广告管理-内容页头部广告(手机)

目录

  • 【常见名词】
  • 一、LLM的低资源模型微调
  • 二、向量数据库
    • 1、Milvus(v2.1.4):云原生自托管向量数据库(Ubuntu下)
      • 1)安装(Docker Compose方式):
      • 2)管理工具(仅支持Milvus 2.0 之后的):
      • 3)python操作:基于pymilvus == 2.1.3
    • 2、Faiss
    • 3、Pinecone:完全托管的云原生向量数据库
    • 4、postgreSQL+pgvector插件
  • 三、LangChain+外挂知识库
    • 1、简介
    • 2、安装
    • 3、主要的几大模块:
  • 四、AI web工具
    • 1、Gradio==3.28.3
    • 2、Streamlit == 1.25.0
  • 五、其他
    • 1、FastChat
    • 2、FastAPI

【常见名词】

1、token
token是LLM中处理的最小文本单元,token的分割有多种策略:
(1)基于空格分词:即以空格为分隔,将文本分割成词组。对于英文可以使用这种方式。
(2)基于词典分词:根据预设的词典,在词典中可以匹配到的词组作为一个token;
(3)基于字节对齐分词:按照字节个数将文本分割,常见的中文模型使用2字节或3字节对;
(4)基于子词分词:将单词拆分为更小的子词组成token,例如"learning"可以拆分为[“learn”,“##ing”];
(5)BPE分词:通过统计学将高频词组 合并 为一个token。(GPT系列采用的方式:是一种基于数据压缩原理的算法,它可以根据语料库中出现频率最高的字节对(byte pair)来合并字节,从而生成新的字节。)

一、LLM的低资源模型微调

(1)p tuning v2
在这里插入图片描述

(2)Lora
这种方法有点类似于矩阵分解,可训练层维度和预训练模型层维度一致为d,先将维度d通过全连接层降维至r,再从r通过全连接层映射回d维度,r< 推理计算的时候,因为没有改变预训练权重,所以换不同的下游任务时,lora模型保存的权重也是可以相应加载进来的,通过矩阵分解的方法参数量减少了很多。
在这里插入图片描述

二、向量数据库

1、Milvus(v2.1.4):云原生自托管向量数据库(Ubuntu下)

  • milvus的GitHub
  • 支持元数据存储。

1)安装(Docker Compose方式):

  • 参考博客:https://blog.csdn.net/hello_dear_you/article/details/127841589
  • 官网说明:https://milvus.io/docs/v2.1.x/install_standalone-docker.md

【注意】安装的时候,如果第一次安装错了版本,直接重新走下面的步骤的时候很可能启动时,milvus-minio秒退!!
在这里插入图片描述

(1)创建目录:

mkdir Milvus

(2)下载YAML文件

wget https://github.com/milvus-io/milvus/releases/download/v2.1.4/milvus-standalone-docker-compose.yml -O docker-compose.yml

(3)在YAML文件所在目录下启动Milvus

sudo docker compose up -d # docker v2,若是v1则使用docker-compose;使用docker compose version查看docker版本

【注意】
① 如果没有docker命令,则安装:

sudo snap install docker

② 这个命令开始执行之后会自动下载Milvus对应的镜像文件,需要等待一段时间。 当镜像下载完成后,相应的容器也会启动。
在这里插入图片描述
(4)查看Milvus的启动状态:

sudo docker compose ps

在这里插入图片描述

(5)停止Milvus

sudo docker compose down

2)管理工具(仅支持Milvus 2.0 之后的):

(1) Milvus_cli
(2) Attu可视化管理界面官方安装教程

  • attu的GitHub
  • 注意 attu 和 milvus 版本之间的对应关系,否则会登录不了,点击connect报400 Bad Request。
milvusattu
2.0.x2.0.5
2.1.x2.1.5
2.2.x2.2.6

① 使用Docker Compose方式进行安装,
step1:通过Docker Compose方式安装完成milvus(即下载完YAML文件);
step2:编辑下载好的YAML文件,在service语句块添加以下内容:

attu: container_name: attu image: zilliz/attu:v2.1.5 environment: MILVUS_URL: milvus-standalone:19530 ports: - "8001:3000" # 我的8000端口一直提示被占用,所以换成了8001端口 depends_on: - "standalone"

step3:启动milvus:sudo docker-compose up -d
在这里插入图片描述

② 使用docker安装

docker run -p 8001:3000 -e MILVUS_URL={your machine IP}:19530 zilliz/attu:v2.1.5

step4:安装完成后,在连网的浏览器输入:http://{ your machine IP }:8001即可进入attu登录界面。
(your machine IP为安装milvus的机器ip;下图为attu的登陆界面,没有放开账号密码认证。)
attu的登陆界面,没有放开账号密码认证

3)python操作:基于pymilvus == 2.1.3

  • 注意Milvus版本和pymilvus版本之间的对应,否则会报错:pymilvus.exceptions.MilvusException:
    两者之间的版本对应:官网
Milvuspymilvus
2.2.122.2.14
2.2.112.2.13
2.1.42.1.3
2.1.22.1.2
  • pymilvus不同版本之间差异很大。
  • milvus的字段数据类型(dtype):仅可以在向量类型字段((BINARY_VECTOR、FLOAT_VECTOR))上创建索引
数据类型说明
NONE
BOOL
INT8支持主键字段
INT16支持主键字段
INT32支持主键字段
INT64支持主键字段
FLOAT
DOUBLE
STRING
VARCHAR
BINARY_VECTOR二值型向量,可以在该类型字段上创建索引 (适用下表中的后两种索引)
FLOAT_VECTOR浮点型向量,可以在该类型字段上创建索引(适用下表中的前九种索引)
UNKNOWN
  • 索引类型(index_type)与向量度量类型(metric_type):
索引类型说明可用的度量类型
FLAT适用于需要 100% 召回率且数据规模相对较小(百万级)的向量相似性搜索应用“L2”, “IP”
IVFLAT / IVF_FLAT基于量化的索引,适用于追求查询准确性和查询速度之间理想平衡的场景(高速查询、要求高召回率)“L2”, “IP”
IVF_SQ8基于量化的索引,适用于磁盘或内存、显存资源有限的场景(高速查询、磁盘和内存资源有限、接受召回率的小幅妥协)“L2”, “IP”
IVF_PQ基于量化的索引,适用于追求高查询速度、低准确性的场景(超高速查询、磁盘和内存资源有限、接受召回率的实质性妥协)“L2”, “IP”
HNSW基于图的索引,适用于追求高查询效率的场景(高速查询、要求尽可能高的召回率、内存资源大的情景)“L2”, “IP”
ANNOY基于树的索引,适用于追求高召回率的场景(低维向量空间)“L2”, “IP”
RHNSW_FLAT基于量化和图的索引,高速查询、需要尽可能高的召回率、内存资源大的情景“L2”, “IP”
RHNSW_PQ基于量化和图的索引,超高速查询、磁盘和内存资源有限、接受召回率的实质性妥协“L2”, “IP”
RHNSW_SQ基于量化和图的索引,高速查询、磁盘和内存资源有限、接受召回率的小幅妥协“L2”, “IP”
BIN_FLAT-“JACCARD”, “TANIMOTO”, “HAMMING”, “SUBSTRUCTURE”, “SUPERSTRUCTURE”
BIN_IVF_FLAT-“JACCARD”, “TANIMOTO”, “HAMMING”

(1)创建conda环境Milvus,并安装pymilvus

pip install pymilvus

【注意】操作时使用docker-compose ps -a查看milvus运行状态,确保milvus容器处在开启状态。

2、Faiss

  • FAISS的GitHub
  • C++编写的向量索引工具,是针对稠密向量进行相似性搜索和聚类的一个高效类库;有python接口,有CPU版和GPU版,可以直接pip安装。
  • 不支持元数据存储
pip install faiss-cpu==1.7.3 # 或者conda环境中安装 conda install faiss-cpu -c pytorch # cpu 版本 conda install faiss-gpu cudatoolkit=8.0 -c pytorch # GPU 版本 For CUDA8

3、Pinecone:完全托管的云原生向量数据库

python中使用:

# langchain中的模块 from langchain.vectorstores import Pinecone

4、postgreSQL+pgvector插件

GitHub网址:https://github.com/pgvector/pgvector
详细内容参见博客:https://blog.csdn.net/lucky_chaichai/article/details/118575261

三、LangChain+外挂知识库

1、简介

  • langchain中文网:https://www.langchain.com.cn/
  • LangChain是一个链接面向用户程序和LLM之间的一个中间层,用以集成LLM和自有知识库的数据。
  • LangChain,可以通过将其它计算资源和自有的知识库结合,通过输入自己的知识库来“定制化”自己的大语言模型,防止“AI幻觉”;
  • 使用langchain将外挂知识库与LLM结合的策略是:
    在向量数据库中索引 question 的相似向量(度量准则包括余弦距离、欧式距离等),找到top_n条向量对应的关联文本作为context,根据预设的模板拼接得到最终的prompt,如:

已知信息:{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。
问题是:{question}

外挂知识库+LLM的一般过程:
在这里插入图片描述

2、安装

pip install langchain

3、主要的几大模块:

LLM API模块:langchain.llms
文本分块器:langchain.text_splitter(text_splitter中常用分类器介绍)
向量模型加载、向量化模块:langchain.embeddings
向量存储、索引模块:from langchain.vectorstores import Milvus, FAISS, Pinecone, Chroma
文件操作模块:langchain.docstore、angchain.document_loaders
langchain.agents

四、AI web工具

1、Gradio==3.28.3

  • Gradio的GitHub:https://github.com/gradio-app/gradio
  • Gradio支持Markdown文本显示规则,‘\n’换行不起作用,需要替换为‘
    ’;
  • 目前感觉这个真的仅适合做小demo(可能我还不是太精通吧);
  • 组件的value是什么数据类型,则在触发事件的函数 fn 中就直接看作该类型进行操作。

gr.Interface()、gr.Blocks()两种方式搭建UI界面:

组件/事件监听器描述
State(value)隐藏组件,用于存储一些组件交互需要使用的变量,可以通过组件之间的交互改变其值,可以使用obj.value获取其值
Markdown(value)Markdown格式的文本输入输出,在页面上遵循Markdown规范显示文本(value)
Tab(value)“标签页”布局组件,在一个页面上可以多个tab切换,value为tab上显示的文字
Row(variant)行类型,“default”(无背景)、“panel”(灰色背景色和圆角)或“compact”(圆角和无内部间隙)
Column(scale)“列布局”组件,scale为与相邻列相比的相对宽度
Accordion(label)折叠框组件, label为折叠筐的名称(会显示在组件上)
Chatbot(value)对话框组件,value为对话框默认值,一般为 [[我方None, 他方init_message], …],该组件在“触发”的fn函数中一般作为上述格式的list使用
Textbox(placeholder)文本框组件,placeholder为在文本区域提供占位符提示的字符串
Radio()
Button(value, interactive)按钮组件,value为按钮上面显示的文字;interactive=False则按钮为禁用状态
Dropdown(choices, label, value)下拉框组件,choices为list,其中元素为可选项;label下拉框的名称(会显示在组件上);value为list中的默认选项
Number(value, label)创建数字输入和显示数字输出的组件,value为该组件默认值,label为该组件名称(会显示在组件上)
change(fn, input, output)触发事件,当前组件(如Dropdown)的输入值改变时将会触发这个事件,fn根据输入input生成输出output,input、output均为组件或组件列表,fn的每个参数对应一个输入组件,每个返回值对应一个输出组件
click(fn, input, output)触发事件,当前组件(如Button)点击时将会触发这个事件
setup()
submit(fn, input, output)触发事件,当前组件(如Textbox)提交(回车)时将会触发这个事件

2、Streamlit == 1.25.0

  • 在做LLM聊天web UI方面,streamlit要比Gradio复杂的多,功能也更加强大,需要自己对各种组件进行风格渲染(没有现成的chatbot这种组件)。
  • 与Gradio相比,需要一点前端基础知识。
  • 不同于Gradio,定义的组件对象和使用st.session_state.[组件key]获取的值一样……
  • 运行方式:在py文件路径下,执行命令streamlit run webui_st.py

简单的聊天对话框示例:

import time import streamlit as st class MsgType: ''' 目前仅支持文本类型的输入输出,为以后多模态模型预留图像、视频、音频支持。 ''' TEXT = 1 IMAGE = 2 VIDEO = 3 AUDIO = 4 class ST_CONFIG: user_bg_color = '#77ff77' user_icon = 'https://tse2-mm.cn.bing.net/th/id/OIP-C.LTTKrxNWDr_k74wz6jKqBgHaHa?w=203&h=203&c=7&r=0&o=5&pid=1.7' robot_bg_color = '#ccccee' robot_icon = 'https://ts1.cn.mm.bing.net/th/id/R-C.5302e2cc6f5c7c4933ebb3394e0c41bc?rik=z4u%2b7efba5Mgxw&riu=http%3a%2f%2fcomic-cons.xyz%2fwp-content%2fuploads%2fStar-Wars-avatar-icon-C3PO.png&ehk=kBBvCvpJMHPVpdfpw1GaH%2brbOaIoHjY5Ua9PKcIs%2bAc%3d&risl=&pid=ImgRaw&r=0' default_mode = '知识库问答' defalut_kb = '' def robot_say(msg, kb=''): st.session_state['history'].append( {'is_user': False, 'type': MsgType.TEXT, 'content': msg, 'kb': kb}) def user_say(msg): st.session_state['history'].append( {'is_user': True, 'type': MsgType.TEXT, 'content': msg}) def format_md(msg, is_user=False, bg_color='', margin='10%'): ''' 将文本消息格式化为markdown文本, 指定user 和 robot消息背景色、左右位置等 Parameters ---------- msg: 文本内容 bg_color: 指定markdown文本的背景颜色 ''' if is_user: bg_color = bg_color or ST_CONFIG.user_bg_color text = f'''
{msg} ''' else: bg_color = bg_color or ST_CONFIG.robot_bg_color text = f'''
{msg} ''' return text def message(msg, is_user=False, msg_type=MsgType.TEXT, icon='', bg_color='', margin='10%', kb='', ): ''' 渲染单条消息(包括双方头像、聊天文本)。目前仅支持文本 返回第2列对象 ''' # 定义界面中的列,若参数为一个整数n,则意为插入n个等尺寸列;若为列表[1, 10, 1]则意为插入3列,数值为各列之间的倍数(数值为小数,则指占界面百分比) # 该函数中,列cols[0]为robot头像,cols[2]为user头像,cols[1]为聊天消息(markdown文本) cols = st.columns([1, 10, 1]) empty = cols[1].empty() # 将第2列初始化为空 if is_user: icon = icon or ST_CONFIG.user_icon bg_color = bg_color or ST_CONFIG.user_bg_color cols[2].image(icon, width=40) # 第3列展示user头像 if msg_type == MsgType.TEXT: text = format_md(msg, is_user, bg_color, margin) empty.markdown(text, unsafe_allow_html=True) # 将第2列填充user的Markdown文本 else: raise RuntimeError('only support text message now.') else: icon = icon or ST_CONFIG.robot_icon bg_color = bg_color or ST_CONFIG.robot_bg_color cols[0].image(icon, width=40) # 第1列展示robot头像 if kb: cols[0].write(f'({kb})') # 用于向Web应用程序添加任何内容?? if msg_type == MsgType.TEXT: text = format_md(msg, is_user, bg_color, margin) empty.markdown(text, unsafe_allow_html=True) # 将第2列填充robot的Markdown文本 else: raise RuntimeError('only support text message now.') return empty def output_messages( user_bg_color='', robot_bg_color='', user_icon='', robot_icon='', ): with chat_box.container(): # 为st添加一个多元素容器(chat_box为前面定义的st的占位符) last_response = None for msg in st.session_state['history']: bg_color = user_bg_color if msg['is_user'] else robot_bg_color icon = user_icon if msg['is_user'] else robot_icon empty = message(msg['content'], is_user=msg['is_user'], icon=icon, msg_type=msg['type'], bg_color=bg_color, kb=msg.get('kb', '') ) if not msg['is_user']: last_response = empty return last_response if __name__ == "__main__": webui_title = """
标签:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

在线投稿:投稿 站长QQ:1888636

后台-插件-广告管理-内容页尾部广告(手机)
关注我们

扫一扫关注我们,了解最新精彩内容

搜索