您现在的位置是:首页 > 技术教程 正文

YOLOv8训练自己的数据集(超详细)

admin 阅读: 2024-04-02
后台-插件-广告管理-内容页头部广告(手机)

 一、准备深度学习环境

本人的笔记本电脑系统是:Windows10
YOLO系列最新版本的YOLOv8已经发布了,详细介绍可以参考我前面写的博客,目前ultralytics已经发布了部分代码以及说明,可以在github上下载YOLOv8代码,代码文件夹中会有requirements.txt文件,里面描述了所需要的安装包。

本文最终安装的pytorch版本是1.8.1,torchvision版本是0.9.1,python是3.7.10,其他的依赖库按照requirements.txt文件安装即可。

然后还需要安装ultralytics,目前YOLOv8核心代码都封装在这个依赖包里面,可通过以下命令安装

pip install ultralytics

二、 准备自己的数据集

本人在训练YOLOv8时,选择的数据格式是VOC,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv8进行使用。

1、创建数据集

我的数据集都在保存在mydata文件夹(名字可以自定义),目录结构如下,将之前labelImg标注好的xml文件和图片放到对应目录下
mydata
…images # 存放图片
…xml # 存放图片对应的xml文件
…dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)
示例如下:
mydata文件夹下内容如下:

  • image为VOC数据集格式中的JPEGImages,内容如下:

  • xml文件夹下面为.xml文件(标注工具采用labelImage),内容如下: 

  • dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下:
  1. # coding:utf-8
  2. import os
  3. import random
  4. import argparse
  5. parser = argparse.ArgumentParser()
  6. # xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
  7. parser.add_argument('--xml_path', default='xml', type=str, help='input xml label path')
  8. # 数据集的划分,地址选择自己数据下的ImageSets/Main
  9. parser.add_argument('--txt_path', default='dataSet', type=str, help='output txt label path')
  10. opt = parser.parse_args()
  11. trainval_percent = 1.0
  12. train_percent = 0.9
  13. xmlfilepath = opt.xml_path
  14. txtsavepath = opt.txt_path
  15. total_xml = os.listdir(xmlfilepath)
  16. if not os.path.exists(txtsavepath):
  17. os.makedirs(txtsavepath)
  18. num = len(total_xml)
  19. list_index = range(num)
  20. tv = int(num * trainval_percent)
  21. tr = int(tv * train_percent)
  22. trainval = random.sample(list_index, tv)
  23. train = random.sample(trainval, tr)
  24. file_trainval = open(txtsavepath + '/trainval.txt', 'w')
  25. file_test = open(txtsavepath + '/test.txt', 'w')
  26. file_train = open(txtsavepath + '/train.txt', 'w')
  27. file_val = open(txtsavepath + '/val.txt', 'w')
  28. for i in list_index:
  29. name = total_xml[i][:-4] + '\n'
  30. if i in trainval:
  31. file_trainval.write(name)
  32. if i in train:
  33. file_train.write(name)
  34. else:
  35. file_val.write(name)
  36. else:
  37. file_test.write(name)
  38. file_trainval.close()
  39. file_train.close()
  40. file_val.close()
  41. file_test.close()
  •  运行代码后,在dataSet 文件夹下生成下面四个txt文档:

  • 三个txt文件里面的内容如下: 

 2、转换数据格式

接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。格式如下:

  •  创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下:
  1. # -*- coding: utf-8 -*-
  2. import xml.etree.ElementTree as ET
  3. import os
  4. from os import getcwd
  5. sets = ['train', 'val', 'test']
  6. classes = ["a", "b"] # 改成自己的类别
  7. abs_path = os.getcwd()
  8. print(abs_path)
  9. def convert(size, box):
  10. dw = 1. / (size[0])
  11. dh = 1. / (size[1])
  12. x = (box[0] + box[1]) / 2.0 - 1
  13. y = (box[2] + box[3]) / 2.0 - 1
  14. w = box[1] - box[0]
  15. h = box[3] - box[2]
  16. x = x * dw
  17. w = w * dw
  18. y = y * dh
  19. h = h * dh
  20. return x, y, w, h
  21. def convert_annotation(image_id):
  22. in_file = open('data/mydata/xml/%s.xml' % (image_id), encoding='UTF-8')
  23. out_file = open('data/mydata/labels/%s.txt' % (image_id), 'w')
  24. tree = ET.parse(in_file)
  25. root = tree.getroot()
  26. size = root.find('size')
  27. w = int(size.find('width').text)
  28. h = int(size.find('height').text)
  29. for obj in root.iter('object'):
  30. # difficult = obj.find('difficult').text
  31. difficult = obj.find('Difficult').text
  32. cls = obj.find('name').text
  33. if cls not in classes or int(difficult) == 1:
  34. continue
  35. cls_id = classes.index(cls)
  36. xmlbox = obj.find('bndbox')
  37. b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
  38. float(xmlbox.find('ymax').text))
  39. b1, b2, b3, b4 = b
  40. # 标注越界修正
  41. if b2 > w:
  42. b2 = w
  43. if b4 > h:
  44. b4 = h
  45. b = (b1, b2, b3, b4)
  46. bb = convert((w, h), b)
  47. out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
  48. wd = getcwd()
  49. for image_set in sets:
  50. if not os.path.exists('data/mydata/labels/'):
  51. os.makedirs('data/mydata/labels/')
  52. image_ids = open('data/mydata/dataSet/%s.txt' % (image_set)).read().strip().split()
  53. list_file = open('paper_data/%s.txt' % (image_set), 'w')
  54. for image_id in image_ids:
  55. list_file.write(abs_path + '/mydata/images/%s.jpg\n' % (image_id))
  56. convert_annotation(image_id)
  57. list_file.close()

 3、配置文件

1)数据集的配置
在mydata文件夹下新建一个mydata.yaml文件(可以自定义命名),用来存放训练集和验证集的划分文件(train.txt和val.txt),这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表,mydata.yaml内容如下:

2) 选择一个你需要的模型
在ultralytics/models/v8/目录下是模型的配置文件,这边提供s、m、l、x版本,逐渐增大(随着架构的增大,训练时间也是逐渐增大),假设采用yolov8x.yaml,只用修改一个参数,把nc改成自己的类别数,需要取整(可选) 如下:

  至此,自定义数据集已创建完毕,接下来就是训练模型了。

 三、模型训练

1、下载预训练模型

在YOLOv8的GitHub开源网址上下载对应版本的模型

 2、训练

接下来就可以开始训练模型了,命令如下:

yolo task=detect mode=train model=yolov8x.yaml data=mydata.yaml epochs=1000 batch=16

以上参数解释如下:

task:选择任务类型,可选['detect', 'segment', 'classify', 'init']

mode: 选择是训练、验证还是预测的任务蕾西 可选['train', 'val', 'predict']

model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yaml

data: 选择生成的数据集配置文件

epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。
batch:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。
 

训练过程如下所示

标签:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

在线投稿:投稿 站长QQ:1888636

后台-插件-广告管理-内容页尾部广告(手机)
关注我们

扫一扫关注我们,了解最新精彩内容

搜索